Size fractions of ambient particulate matter induce granulocyte macrophage colony-stimulating factor in human bronchial epithelial cells by mitogen-activated protein kinase pathways.

نویسندگان

  • Joan Reibman
  • Yanshen Hsu
  • Lung Chi Chen
  • Asok Kumar
  • Wei Cheng Su
  • Wanda Choy
  • Anita Talbot
  • Terry Gordon
چکیده

Environmental pollutants, including ambient particulate matter (PM), increase respiratory morbidity. Studies of model PM particles, including residual oil fly ash and freshly generated diesel exhaust particles, have demonstrated that PM affects inflammatory airway responses. Neither of these particles completely represents ambient PM, and therefore questions remain about ambient particulates. We hypothesized that ambient PM of different size fractions collected from an urban environment (New York City air), would activate primary culture human bronchial epithelial cells (HBECs). Because of the importance of granulocyte-macrophage colony-stimulating factor (GM-CSF) on inflammatory and immunomodulatory processes, we focused our studies on this cytokine. We demonstrated that the smallest size fraction (ultrafine/fine; < 0.18 micro m) of ambient PM (11 micro g/cm(2)), upregulated GM-CSF production (2-fold increase). The absence of effect of carbon particles of similar size, and the day-to-day variation in response, suggested that the chemical composition, but not the particle itself, was necessary for GM-CSF induction. Activation of the extracellular signal-regulated kinase and the p38 mitogen-activated protein kinase was associated with, and necessary for, GM-CSF release. These studies serve to corroborate and extend those on model particles. Moreover, they emphasize the role of the smallest size ambient particles in airway epithelial cell responses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of expression of granulocyte-macrophage colony-stimulating factor in human bronchial epithelial cells: roles of protein kinase C and mitogen-activated protein kinases.

GM-CSF has a major role in the immune and inflammatory milieu of the airway. Airway epithelial cells (AEC) are among the first targets of environmental stimuli and local cytokines, in response to which they can produce GM-CSF. The regulation of GM-CSF is only minimally understood in AEC. We hypothesized that GM-CSF expression in AEC would result from activation of protein kinase C (PKC) and sub...

متن کامل

Expression and role of EGFR ligands induced in airway cells by PM2.5 and its components.

The aim of the current study was to establish the epidermal growth factor receptor (EGFR) ligand expression profile in human airway epithelial cells exposed to either particulate matter (PM) with an aerodynamic diameter <2.5 microm (PM(2.5)) or its components and the involvement of EGFR ligands in PM(2.5)-provoked airway inflammation. EGFR ligand mRNA and protein expression were studied in a hu...

متن کامل

Benzene-extracted components are important for the major activity of diesel exhaust particles: effect on interleukin-8 gene expression in human bronchial epithelial cells.

Epidemiologic and experimental studies suggest that diesel exhaust particles (DEPs) may be related to increasing respiratory mortality and morbidity. We have shown that DEPs augmented the production of inflammatory cytokines by human airway epithelial cells in vitro. To better understand the mechanisms of their proinflammatory activities, we studied the effects of several components extracted f...

متن کامل

Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression.

Diesel exhaust particles (DEP) are known to enhance inflammatory responses in human volunteers. In cultured human bronchial epithelial (16HBE) cells, they induce the release of proinflammatory cytokines after triggering transduction pathways, including nuclear factor (NF)-kappaB activation and mitogen-activated protein kinase (MAPK) phosphorylation. This study compares the effects of native DEP...

متن کامل

Retinoids and myelomonocytic growth factors cooperatively activate RARA and induce human myeloid leukemia cell differentiation via MAP kinase pathways.

Use of all-trans-retinoic acid (ATRA) in combinatorial differentiation therapy of acute promyelocytic leukemia (APL) results in exceptional cure rates. However, potent cell differentiation effects of ATRA are so far largely restricted to this disease and long-term survival rates in non-APL acute myelogeneous leukemia (AML) remain unacceptably poor, requiring development of novel therapeutic str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of respiratory cell and molecular biology

دوره 27 4  شماره 

صفحات  -

تاریخ انتشار 2002